

Glucose metabolism changes in patients with sepsis on FDG PET

Ghada Issa, MD PGY-3 Department of Diagnostic Radiology and Nuclear Medicine University of Maryland School of Medicine Baltimore MD

Background

- Main features of sepsis are uncontrollable activation of pro and anti-inflammatory responses resulting in metabolic changes in vital organs
- Abnormal glucose metabolism is a known stress-related response
- Sepsis induced encephalopathy: decreased cerebral blood flow and cerebral glucose uptake (described in rat experiments)

Background

- FDG PET CT in infection:
 - Catheter or prosthesis related infection
 - Osteomyelitis
 - Early localization of site of infection in patients with sepsis or fever of unknown origin

Background

- FDG PET CT in infection:
 - Catheter or prosthesis related infection
 - Osteomyelitis
 - Early localization of site of infection in patients with sepsis or fever of unknown origin

Hypothesis

- Patients with sepsis have decreased FDG uptake within major organs and relatively increased uptake within muscles and soft tissues compared to patients with infection without sepsis
- FDG distribution in patients with sepsis can correlate with severity and may predict prognosis

Retrospective review

Population

• Adult patients who underwent whole body PET CT for evaluation of infection/sepsis

Study period

• Jan 2016 – Jan 2017

Data

- Demographics
- PET CT (Date, indication, SUV)
- Clinical data (VS, GCS, labs)

- PET CT review
 - All PET CT were reviewed by 2 radiology residents
 - Reviewers were blinded to clinical status

- PET CT review
 - SUV of the following major organs
 - Brain
 - Liver
 - Spleen
 - Adrenal gland

- Bone Marrow
- Subcutaneous fat

Y of MARYLAND

HOOL OF MEDICINE

Muscles

- PET CT review
 - Special considerations
 - Brain: Bilateral frontal/parietal/temporal/occipital lobes, brain stem
 - Standardized SUV area (40 cm² for liver) for R and L hepatic lobes
 - Organs involved with focal infectious process were excluded

Sepsis groups

 Clinical data was reviewed by 2 ID physicians to determine sepsis diagnoses based on VS, GCS and lab values from the same day of PET CT

• Clinicians were blinded to PET CT results

- Statistical analysis
 - Difference is major organ SUV values for the 2 groups was calculated with a simple t-test

SUV values

Organ	Sepsis	No sepsis	P-value	
Frontal lobe	4.3 (1.9)	7.5 (4.0)	0.0008	
Parietal lobe	4.5 (1.9)	8.3 (4.1)	0.0001	
Temporal lobe	3.9 (1.6)	6.5 (3.1)	0.0005	
Occipital lobe	4.5 (2.2)	8.6 (4.6)	0.003	
Cerebellum	4.3 (1.8)	6.8 (2.8)	0.0011	
Brainstem	4 (1.7)	5.6 (2.1)	0.0093	
Liver	3.1 (1.1)	3.1 (1.4)	0.97	
Spleen	3.1 (1)	3 (1)	0.77	
Adrenal	2.3 (1.4)	1.9 (0.5)	0.2	
BM T12	4 (1.7)	2.9 (0.8)	0.02	
BM iliac crest	3.2 (1.5)	2.3 (0.6)	0.03	
Subcut fat	0.8 (0.4)	0.7 (0.4)	0.6	
Muscle	1 (0.4)	1.1 (0.6)	0.6	SITY of MARYLAN

BM:bone marrow, Subcut:subcutaneous

SUV values

Organ	Sepsis	No sepsis	P-value	
Frontal lobe	4.3 (1.9)	7.5 (4.0)	0.0008	
Parietal lobe	4.5 (1.9)	8.3 (4.1)	0.0001	
Temporal lobe	3.9 (1.6)	6.5 (3.1)	0.0005	
Occipital lobe	4.5 (2.2)	8.6 (4.6)	0.003	
Cerebellum	4.3 (1.8)	6.8 (2.8)	0.0011	
Brainstem	4 (1.7)	5.6 (2.1)	0.0093	
Liver	3.1 (1.1)	3.1 (1.4)	0.97	
Spleen	3.1 (1)	3 (1)	0.77	
Adrenal	2.3 (1.4)	1.9 (0.5)	0.2	
BM T12	4 (1.7)	2.9 (0.8)	0.02	
BM iliac crest	3.2 (1.5)	2.3 (0.6)	0.03	
Subcut fat	0.8 (0.4)	0.7 (0.4)	0.6	
Muscle	1 (0.4)	1.1 (0.6)	0.6	SITY of MARYLANI

BM:bone marrow, Subcut:subcutaneous

Results

If 3 2016

UNIVERSITYがMARYLAND School of Medicine

Discussion

- Patients with sepsis have significantly decreased SUV values in the brain and increased SUV values in bone marrow compared to patients with no sepsis
- Patient with sepsis may have qualitatively increased uptake in muscles and subcutaneous tissue no statistically significant SUV value
- Sepsis encephalopathy can be quantified with FDG PET CT
- Increased bone marrow activity related to systemic inflammatory response

Discussion

- Further analysis:
 - Account for concomitant conditions, medications...
 - FDG distribution correlation with early sepsis versus severe sepsis
 - PET CT distribution pattern and outcome/prognosis of septic patients

Conclusion

- There is altered glucose metabolism in sepsis
- FDG uptake as a useful tool to locate infection, assess severity and predict prognosis

References

- *Hiroyuki et al* Blood glucose control in patients with severe sepsis and septic shock *World J Gastroenterol 2009; 15(33)*
- Semmler et al Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism Journal of Neuroinflammation 2008; 5(38)
- Lheureux and Preiser Year in review 2013: Critical Care metabolism Critical Care 2014; 18(571)
- Singer et al The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) JAMA 2016; 315(8)
- Charito et al FDG PET of infection and inflammation Radiographics 2005; 25(5)

Thank you

Chee Lee Hwee, MD

