The evolving role of PET/CT for neuroendocrine tumor imaging

Daniel A. Pryma, M.D.

Associate Professor of Radiology & Radiation Oncology Chief, Division of Nuclear Medicine & Clinical Molecular Imaging Perelman School of Medicine at the University of Pennsylvania

Neuroendocrine cancers

- Origins
 Oiverse group of neoplasms of various behaviors and origins
 - All originate from cells that share common elements with nerve cells
 - Reuron specific enolase
 - R Chromogranin A
 - APUD: Amine Precursor Uptake and Decarboxylase
 - Often, but not always, secrete hormones

Carcinoid

- $\sim ~75\%$ from GI tract
- $\sim 25\%$ bronchial
- R Often presents with carcinoid syndrome
 - 🕫 Diarrhea
 - R Flushing
 - Abdominal pain
- Record most prevalent GI cancer

Pancreatic NETs

- Various cells of origin result in various symptoms
 Gastrinoma, insulinoma, VIPoma, glucagonoma, somatostatinoma

Other NETs

- Gastroenteropancreatic neuroendocrine tumors (GEPNETS)
- R Bronchial carcinoid
- CR Unknown primaries

Pheochromocytoma/ Paraganglioma

Rule of 10s:

- $\sim 10\%$ of cases are bilateral
- $\sim \sim 10\%$ of cases are extraadrenal
- $\sim \sim 10\%$ of cases are malignant
- $\sim ~10\%$ of cases are genetically predisposed

Paraganglioma

Real Name pheochromocytoma describes location of origin

Real Paraganglioma arises outside the adrenal

Parasympathetic paraganglioma

More often head and neck origin
Almost always benign
Usually non-functioning
SDHC
Lesser extent SDHD

Sympathetic paraganglioma

- Often abdominal
 Organ of Zuckerkandl
 Retroperitoneal
- Much higher malignancy rate (up to 1/3?)
- R SDHB
 - Also VHL, NF1, MEN-2

Neuroblastoma

Real Most common extracranial solid tumor of childhood

R Most common malignancy in first year of life

~600 new cases annually in US
 ~ <10% of new cases in patients > 5 years old

Neuroblastoma

Originate from neural crest cells
 Most common primary site is retroperitoneum
 Primaries can be found in neck, posterior mediastinum and pelvis

~60% have metastatic disease at presentation
 Rone, nodes and liver most common

R Prognosis is dismal

Neuroendocrine cancers Bottom line

- R Myriad unique diseases
- R Have a lot in common
 - Some surprising shared therapeutic targets

meta-Iodobenzylguanidine (MIBG)

CR Described by Wieland et al in 1979 at University of Michigan

R Iodination in the meta position

R Not a norepinephrine analog Substrate for NET

I-123 versus I-131 MIBG

Both FDA approved

I-123 MIBG

- c Primarily γ
- R Limited availability*
- R Expensive
- R Lower thyroid exposure

I-131 MIBG

- ∞ 8 d half life
- - R Lower resolution
- \sim γ and β -
- R Widely available
- SPECT impossible (for diagnostic scans)

A phantom study: should ¹²⁴I-mIBG PET/CT replace ¹²³I-mIBG SPECT/CT?

Casper Beijst^{1,2}, Bart de Keizer¹, Marnix G.E.H. Lam¹, Geert O. Janssens³, Godelieve A.M. Tytgat⁴, Hugo W.A.M. de Jong¹

Clin Nucl Med, 30(2) 2005

Clin Nucl Med, 30(2) 2005

Somatostatin receptor

- 7 transmembrane domains
- Real Highly expressed in GI tract
- Generally inhibitory function
- Expressed on huge number of cancers
 Not limited to neuroendocrine cancers

Somatostatin Analogs

- Most neuroendocrine cancers express somatostatin receptors
- Somatostatin has incredibly short half life

Octreoscan (In-111-pentetreotide)

- Real Highest affinity for SSTR-2
 - R Lesser for SSTR-5 and SSTR-3
- Ragional Infect 6 mCi In-111-pentetreotide intravenously
- R Planar whole body images at 4 and 24 hours

- Some sites image at 48 hours and beyond

Planar octreoscan

Somatostatin PET imaging

Ga-68 DOTA-somatostatin analog
 Recently approved in US
 Ga-68 DOTATATE (Netspot)
 PET/CT gives:

- R Higher resolution
- R Higher contrast

Permutations

63	Octreotide	63	In-111
	CR DTPA - pentetreotideCR DOTA - DOTATOC	R	Ga-68
	-DOTANOC	63	Lu-177
Q	Octreotate DOTA – DOTATATE	63	Y-90
	CA DOIA DOIAIAIL		Etc.

Antagonists

Ga-68 DOTATATE PET/CT Imaging protocol

A Minimal patient prep

- Real Encourage hydration
- Schedule as far from somatostatin analog as possible
- R Inject 0.054 mCi/kg up to 5.4 mCi
- Image at 45-60 minutes post injection
 Some image later
- Oral, IV contrast optional
 Patients predisposed to diarrhea
- Real Patient in and out in under 2 hours

Ga-68

- Generator produced
 Ge-68 parent, 271 d half-life
 Ga-68 daughter, 68 minute half-life
 Can elute ~3x/working day
 3 doses per day
- R Timing is critical

ALARA

Radiopharmaceutical effective dose:

Ga-68 DOTATATE 3.15 mSv Ga-68 DOTATATE 3.15 mSv Ga-68 DOTATATE 3.15 mSv

Insurance coverage

- ∝ CMS pass-through drug coverage
- R Bill scan and drug separately
- Private insurers/RBMs slowly coming up to speedThanks Dr. Metz (and others)!

What to use when

Now and future directions

Synthesis and evaluation of ¹⁸F-labeled benzylguanidine analogs for targeting the human norepinephrine transporter

Hanwen Zhang • Ruimin Huang • NagaVaraKishore Pillarsetty • Daniel L. J. Thorek • Ganesan Vaidyanathan • Inna Serganova • Ronald G. Blasberg • Jason S. Lewis

Synthesis and evaluation of 4-[¹⁸F] fluoropropoxy-3-iodobenzylguanidine ([¹⁸F]FPOIBG): A novel ¹⁸F-labeled analogue of MIBG

Ganesan Vaidyanathan *, Darryl McDougald, Eftychia Koumarianou, Jaeyeon Choi, Marc Hens, Michael R. Zalutsky

Imaging intentions

- R Not always disease detection
- R Theranostics/companion diagnostics
 - Assess suitability for therapy
 - R Measure kinetics
 - R Evaluate response

Lesional dosimetry

203 rad/mCi

Courtesy of John Humm, PhD

⁶⁸Ga-DOTATATE and ¹⁸F-FDG PET/CT in Paragangl_a ma: b utility, pat Chian A. Chang¹, David ², Rodney J. Hicks^{1,2} and Michael S. Hofman Perelman

Feasibility and advantage of adding ¹³¹I-MIBG to ⁹⁰Y-DOTATOC for treatment of patients with advanced stage neuroendocrine tumors

David L Bushnell^{1,2*}, Mark T Madsen¹, Thomas O'cdorisio³, Yusuf Menda¹, Saima Muzahir¹, Randi Ryan⁴ and M Sue O'dorisio⁵

	Organ dose limits	Maximum activity (GBq) ⁹⁰ Y-DOTA alone (given over multiple cycles)	Optimum percentage of maximum ⁹⁰ Y activity to be given when adding MIBG	Acivity (GBq) of ¹³¹ I-MIBG that can be added without exceeding limits	Tumor dose (cGy): ⁹⁰ Y-DOTA given alone	Tumor dose (cGy) ⁹⁰ Y + ¹³¹ I
Kidney	2,300	4.9	75	33.3	1,006	2,499
Marrow	300					

⁶⁸Ga-DOTATATE Compared with ¹¹¹In-DTPA-Octreotide and Conventional Imaging for Pulmonary and Gastroenteropancreatic Neuroendocrine Tumors: A Systematic Review and Meta-Analysis

Stephen A. Deppen¹⁻³, Jeffrey Blume⁴, Adam J. Bobbey⁵, Chirayu Shah^{1,6}, Michael M. Graham⁷, Patricia Lee⁸, Dominique Delbeke^{3,6}, and Ronald C. Walker^{1,3,5,6}

Meta-analysis of 42/2,479 publications

- Attempt to estimate sensitivity/specificity of PET vs SPECT
 - Considerable statistical and data quality limitations
 - ∞ PET sensitivity ~91%, specificity 91%
 - R Probably superior to SPECT

Mesenteric adenopathy SPECT/CT vs PET/CT

Liver mass, unknown primary

Conclusions

- PET/CT improves signal-noise
 Better contrast, lesion detectability
- Ga-68 DOTATATE excellent diagnostic quality
 Broad spectrum of neuroendocrine cancers
 Short half-life
 Causes logistical urgencies
 - CR Limits utility as companion diagnostic
- Multiple other potential agents in development
 Therapeutics to match coming soon!

